The Tetrahedral Golay Code

نویسنده

  • R. Michael Tanner
چکیده

Forney conjectured the existence of a “normal realization” (NR) for the [24,12,8] Golay code in which the code appears as a tetrahedron, with 6 output channel bits at each of the 4 vertices and 2 state bits carried by each of the 6 edges. Although the conjecture was dashed by Vardy, we here give a quasi-cyclic NR exhibiting tetrahedral symmetry, confirming the common wisdom that Forney is never (far) wrong.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Golay Code Outperforms the Extended Golay Code Under Hard-Decision Decoding

We show that the binary Golay code is slightly more power efficient than the extended binary Golay code under maximum-likelihood (ML), hard-decision decoding. In fact, if a codeword from the extended code is transmitted, one cannot achieve a higher probability of correct decoding than by simply ignoring the 24th symbol and using an ML decoder for the non-extended code on the first 23 symbols. T...

متن کامل

Symbol-by-symbol APP decoding of the Golay code and iterative decoding of concatenated Golay codes

An efficient coset based symbol-by-symbol soft-in/soft-out APP decoding algorithm is presented for the Golay code. Its application in the iterative decoding of concatenated Golay codes is examined.

متن کامل

Title Symbol-by-symbol APP decoding of the Golay code and iterative decoding of concatenated Golay codes

An efficient coset based symbol-by-symbol soft-in/soft-out APP decoding algorithm is presented for the Golay code. Its application in the iterative decoding of concatenated Golay codes is examined.

متن کامل

The poset structures admitting the extended binary Golay code to be a perfect code

Brualdi et al. [Codes with a poset metric, Discrete Math. 147 (1995) 57–72] introduced the concept of poset codes, and gave an example of poset structure which admits the extended binary Golay code to be a 4-error-correcting perfect P-code. In this paper we classify all of the poset structures which admit the extended binary Golay code to be a 4-error-correcting perfect P-code, and show that th...

متن کامل

Golay Codes

We discuss a specific type of error-control coding using Golay codes. First we introduce the basics of coding. Then we discuss the Golay code in binary form, extended binary form, and ternary form.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000